skip to main content


Search for: All records

Creators/Authors contains: "Black, Mitchell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 31, 2024
  2. We present a novel technique for solving the problem of safe control for a general class of nonlinear, control-affine systems subject to parametric model uncertainty. Invoking Lyapunov analysis and the notion of fixed-time stability (FxTS), we introduce a parameter adaptation law which guarantees convergence of the estimates of unknown parameters in the system dynamics to their true values within a fixed-time independent of the initial parameter estimation error. We then synthesize the adaptation law with a robust, adaptive control barrier function (RaCBF) based quadratic program to compute safe control inputs despite the considered model uncertainty. To corroborate our results, we undertake a comparative case study on the efficacy of this result versus other recent approaches in the literature to safe control under uncertainty, and close by highlighting the value of our method in the context of an automobile overtake scenario. 
    more » « less
  3. In this paper, we study the effect of non-vanishing disturbances on the stability of fixed-time stable (FxTS) systems. We present a new result on FxTS, which allows a positive term in the time derivative of the Lyapunov function with the aim to model bounded, non-vanishing disturbances in system dynamics. We characterize the neighborhood to which the system trajectories converge, as well as the convergence time. Then, we use the new FxTS result and formulate a quadratic program (QP) that yields control inputs which drive the trajectories of a class of nonlinear, control-affine systems to a goal set in the presence of control input constraints and nonvanishing, bounded disturbances in the system dynamics. We consider an overtaking problem on a highway as a case study, and discuss how to both set up the QP and decide when to start the overtake maneuver in the presence of sensing errors. 
    more » « less